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An alternative method is presented for computing wave propagation in two-dimensional nonhomo-
geneous media. The method is based on computing the exact Green’s function for a domain using a re-
cursive Green’s-function approach. In comparison with the finite-difference time-domain method, our
approach requires substantially less memory and computational time, enabling the modeling of larger
and more complex domains. The method is validated by comparing with exact analytical solutions and

is found to be highly accurate.

PACS number(s): 42.25.Bs, 41.20.Jb, 02.70.+d, 42.25.Fx

I. INTRODUCTION

Wave propagation in nonhomogenous media has been
an active area of study in many fields over the years
[1-10] with emphasis on different computational tools
depending on the specific application. For integrated-
optics devices, the problem domains are large, while, gen-
erally, the beam divergences are small and the index of
refraction is a weak function in the direction of propaga-
tion. The latter two properties can be exploited to simpli-
fy the solution of the Helmholtz equation. To this end,
various marching algorithms, under the generic title of
the beam-propagation method (BPM), have been
developed to study forward-propagating solutions within
these devices [1-3]. Recently, the BPM has been extend-
ed to include reflections (bidirectional BPM [4]) and exact
forward-propagating solutions [5]. However, the bidirec-
tional BPM cannot efficiently model gratings and loses
accuracy for strongly guided devices, while the exact
solution of the Helmholtz equation using the Lanczos
method is very slow for strongly guided structures. In
the field of electromagnetic wave scattering, the general
approach has been the direct solution of either the time-
independent [6,7] or time-dependent Maxwell’s equations
[8-10]. For example, the finite-element and boundary-
element methods have been combined to model discon-
tinuities in open slab waveguides [6,7]. However, the
domain of the discontinuity must be limited to avoid ex-
cessive computational times associated with the finite-
element solution of the Helmholtz equation. For the
time-dependent case, the technique of choice is typically
the finite-difference time-domain (FDTD) method [8],
which has been used to model both scattering by arbi-
trary obstacles [9] and gratings [10]. As for the time-
independent case, the FDTD technique is very computa-
tionally intensive, thus limiting the complexity and size
of the problem domain.

In order to combine the speed of the BPM with the ac-
curacy of the FDTD method, we introduce a recursive
Green’s-functional solution [11,12] of the Helmholtz
equation. For simplicity, the technique is applied to the
solution of the two-dimensional scalar wave equation;
however, it is straightforward to extend the approach to
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three dimensions and to solutions of the vector wave
equation [13]. The recursive method is an algorithm for
computing the Green’s function of a large domain based
on the knowledge of the Green’s function of smaller sec-
tions of the domain. In each recursion step, the Green’s
functions corresponding to two adjoining sections are re-
placed by a single Green’s function of the composite sec-
tion. Referring to Fig. 1, the large structure of extent L,
is split up into smaller sections (to be called unit sections)
of length AL,, whose Green’s functions can be easily
computed. The recursive method is used to form the
overall Green’s function by building up the size of the
domain section by section until it corresponds to the
structure of the proper length. More specifically, starting
from the left-hand side of the structure and proceeding to
the right, with each successive recursion step, the left-
hand section Green’s function increases in complexity
and thickness [from AL, to (M —1)AL,], while the
right-hand section Green’s function corresponds to that
of the unit section. Since AL, can be on the order of
nanometers, the original two-dimensional problem is
effectively reduced to a series of one-dimensional prob-
lems, leading to small memory requirements and fast
computational times. The unit-section Green’s functions
are computed by solving Dyson’s equation [14] which is
recast as a linear algebraic equation set. Having deter-
mined the overall Green’s function, Green’s theorem is
used to calculate the reflected and transmitted fields,
yielding the overall reflection and transmission
coefficients. We previously applied this approach to com-
puting the propagation constants of first-order one-
dimensional laser cavities [12]. As for that case, the one
trade-off of our recursive approach is that the field distri-
bution within the structure cannot be determined. How-
ever, for many applications, e.g., distributed-feedback
laser analysis [12], computing the internal fields is not
essential and, presently, we are extending our approach
to include the capability of calculating field distributions
at selected longitudinal cross sections.

II. METHODOLOGY

In this section, the formalism is derived for computing
the Green’s function of an arbitrary two-dimensional
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domain composed of complex dielectric media. In Sec.
II A, the wave equation and its boundary conditions are
given, followed, in Sec. II B, by a discussion of the con-
struction of the unit-section Green’s function. In Sec.
II C, the recursive-Green’s-function formalism is derived,
while in Sec. II D, Green’s theorem is used to compute
the reflected and transmitted fields.

A. Wave equation

In the following it will be assumed that the transmit-
tance and reflectance of two-dimensional complex dielec-
tric media can be computed through the solution of the
scalar Helmholtz wave equation. As shown elsewhere
[13], the extension to the case of the solution of the vec-
tor wave equation is straightword. Figure 1 shows a
schematic of a two-dimensional nonhomogenous domain,
divided into M smaller sections for later calculation of
the unit-section Green’s functions. Indicted in the figure
are the input, transmitted, and reflected fields, E;(y),
E,(y), and E,(y), respectively. There is no incident field
at z=L,, since the surrounding media is assumed to ex-
tend to infinity on both sides of the structure. The
schematic indicates a rectangular boundary; however, the
media contained within the boundaries can assume any
shape. The scalar Helmholtz wave equation can be writ-
ten as :

(V5 +V2+kN(y,2) [(y,2)=0, oY

where 1 is the wave function (electric field), k (=27 /A)
is the free-space propagation constant, and N(y,z) is the
complex refractive index distribution. Assuming that
external to the structure the effective indices of refraction
are Ny and N, on the left- and right-hand sides, respec-
tively, the boundary values for ¥(y,z) can be determined
based on the continuity of the electric field across dielec-
tric interfaces,
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FIG. 1. Schematic of a two-dimensional nonhomogenous

domain indicating the division of the structure into M smaller
sections. The exact Green’s function is computed for each of
the sections. Also indicated are the incident, reflected, and
transmitted fields, E;(y), E,(y), and E,(y), respectively.
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Y(y,z=0)=E;(y)+E.(y), (2a)

ikN ., L
Wp,z=L,)=E,(ple" %

B. Unit-section Green’s function

As indicated in Fig. 1, the rectangular domain is split
up into M thinner rectangular sections of thickness AL,.
The motivation behind the division is that it is simpler
numerically to obtain the Green’s function of M thin sec-
tions, rather than one thick section of extent MAL,. Pri-
or to constructing the unit-section Green’s functions, it is
necessary to determine their boundary conditions. This
choice requires some special considerations. The most
general homogeneous boundary conditions are of the
form

AG(y,a;y’z')+B£§(ch?Z;y’—z)|z=a =0.0, (3a)
CG(b,z;y',z')+D£’-Gw‘-b;y”’—’Z)|y:,,=o.o, (3b)

where Egs. (3a) and (3b) refer to the longitudinal (z) and
transverse (y) boundaries, respectively, G(y,z;y’,z’) is
the two-dimensional Green’s function, a and b denote end
points for the longitudinal and transverse boundaries, re-
spectively, and 4, B, C, and D are known coefficients.
The positions of the transverse boundaries are chosen
such that the field is zero along it. In order to help en-
force this condition, an absorbing region is employed
adjacent to the y =0,L, boundaries, i.e., to the complex
refractive index distribution within a distance W,
from the boundary, an imaginary contribution
n;cos(w|y —b|/2W,) is added. This technique is used in
both FDTD [9] and BPM [1] simulations to prevent
reflections of outwardly scattered radiation back into the
problem domain. Consequently, in Eq. (3b), C=1 and
D =0. As will be discussed in Sec. II D, depending on the
form of the longitudinal boundary conditions, Green’s
theorem can be used to compute the transmission
coefficient either in terms of the z=0,L, Green’s func-
tions or their derivatives. As will be shown in Sec. IIC,
the recursive Green’s function method can be used to
compute easily the end point Green’s functions, not their
derivatives. Hence B must be nonzero, while A4 can as-
sume any value [15]. Consequently, the simplest choice is
A=0 and B =1. Since the boundary conditions are
maintained during the recursion process, the same
boundary conditions apply to each unit section.

The unit section Green’s functions are determined by
solving Dyson’s equation (an integral equation) [14]. This
is the standard approach taken in quantum field theory
for computing the perturbed Green’s function from the
known, unperturbed Green’s function and is exact. Un-
like typical perturbation approaches, the perturbation
does not have to be small in order to give correct results.
For details concerning the derivation and usage of
Dyson’s equation, the reader is referred to Ref. [14]. In
operator notation, Dyson’s equation can be written as
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G=G"+G% — Green’s function. [Typically, Eq. (4) is written with no
minus sign in front of the perturbation V.] Since Eq. (4)
is an operator expansion, it is necessary to convert it into
a specific representation. The most appropriate is the
real-space representation, which yields

viG , )

where G is the known, unperturbed Green’s function, V'
is the perturbation, and G is the desired, perturbed

Ly AL,
G(y,z;y'z'):Go(y,Z;y',Z')+f dy”f dZ”GO(y,Z;y”,Z”){ '—V(y”,Z”)}G(y”,Z”;y',Z') , (5)

which clearly shows that Dyson’s equation is an integral equation. Prior to solving Eq. (5), it is necessary to choose G°
and V. G° can be constructed analytically if it corresponds to a unit section composed of a uniform index n, (we chose
n, to be also purely real). For a two-dimensional rectangular domain, the scalar wave equation Green’s functlon cannot

be derived in closed form, but can be represented by the following single series expansion [16]:

2cos[C(z —z,)cos[C(z"—z,)]sin(pmy /L, )sin(pmy’ /L))

GO(y,Z’;y’,ZI):E
P

where z, and z, are the top and bottom longitudinal
boundaries of the wunit section, respectively,
Ci=k? ,,2—(p21r2/Ly2), and there is an analogous expres-
sion for z >z’, which is obtained by reversing z and z’ in
the numerator. Typically, p is taken up to 400 to obtain
good convergence, where if the structure has symmetry
about L,/2, then only odd values are necessary. It
should be noted that C becomes complex for certain
values of p; hence, complex cosine (or cosh) functions
need to be employed. With the above choice for G°,
V(y,2)=k* N%y,z)—n?2].

Equation (5) is typically solved by expanding in an
orthonormal basis set, involving global basis functions
[15]. However, as a result of the very small thickness of
the unit-section rectangles (on the order of nanometers),
only a minimal basis-set expansion is requrred in the lon-
gitudinal direction. The simplest solution is to employ a
collocation basis set, i.e., use a quadrature rule to evalu-

J

Egpq(zj’zl ¢p(y)¢q y )—Egpq z_/’zl ¢p ¢q(y +f dy”zw

where, for example, K, is a (mp, X 3)X(my,X3) ma-
trix and my,, is the number of ¢, (y) basis functions
(there are three collocation basis functions). Following
integration over y'’ and some straightforward manipula-
tion, one obtains

Z ij pm Ew )Snm ]g,,,q(zi,zl):gﬁq(zj,zl) N
(9a)
— Lyd
Sum=[ " dy 6,0 ») , (9b)

where S is the ¢,,(y) overlap matrix and Eq. (9a) is a set

L,Csin(CL,)

z<z'), (6)

ate the z-dependent integrals in Eq. (5),

G(y,2;;y",2)=Gy, zj;y’ z;)
+f dy”Zwa 3Y'sz)
XGy",z;;y'z;), (D
where K(y,z;y",z")=G%y,z;y",z"){ —k*N2(y",z")},

and z; and w; are the quadrature points and weights at
point i, respectively. As a result of the extent of AL,,
only three quadrature points were required and the
weights were chosen according to Simpson’s rule. In the
transverse direction it was determined that expanding in
global basis functions resulted in Eq. (7) converging very
slowly. The simplest one-dimensional localized,
nonorthonormal basis functions are overlapping chapeau
functions, ¢,,(y) [17]. Upon expanding Eq. (7) in ¢,,(y
one obtains

(Z],ZI- )¢p(y)¢n(y”)2gmq(zi’zl )¢m (_V” )¢q(y’) ’
m,q

iLp,n

of linear algebraic equations ( Ax =b). Prior to solving

q (9a) for g, it is necessary to determine expressions for
gpq( z;) and K, (2;,2;)S,,,. Since gpq( 1»2;) is the trans-
form of GOy, zj,y z,) it is simple to show that

L L
8pq(z ZSTn’ fo "dy fo "dy'$, ()G (y,z;59",2))

X, (r') |Spg' s (10)

where a comparable expression for K,,(z;,z;)S,,, can be
analogously derived. As a result of employing chapeau
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basis functions, the integrals in Eq. (10) are straightfor-
ward to evaluate.

C. Recursive-Green’s-function formalism

The recursive-Green’s-function method was introduced
previously [11] to study the transmission properties of
electrons through disordered samples. The formalism
can be generated through repeated application of Dysons’
equation. In order to help clarify the derivation for opti-
cal wave propagation, reference will be made to Fig. 2(a),
which illustrates two sections of a composite domain, S,
and §,, having longitudinal lengths L, and L, —L,, re-
spectively, and complex indices of refraction, n; and n,
(which can be nonuniform), respectively. As will be dis-
cussed below in Sec. II D, the calculation of E,(y) and
E (y) requires that the overall Green’s function be evalu-
ated at g(0,0), g(0,L), g(L,0), and g(L,L), where each g
is an (my,  Xm,,;) matrix. Consequently, in computing
the Green’s function of the composite domain indicated
J

G(»,0;y',L,

L L
G(y,Lz;y’,L2)=G,,2(y,Lz;y’,LzH— fo ydy"fL],lldz G,?z(y,Lz;y”,z)[V(y",z)]G(y”,z;y’,L2) R

L L
Gy, Ly, L)=G) (., Lysy Lo+ [ “dy” [, 'dz GP (y,Lysy",2)[V(y",2)1G(y", 239", L)
-

L L,
GULyy'Ly)= [ Pdy" [, "dz G (v, Lysy" ) —

where, for example, G,?l indicates the isolated domain Green’s function for S,.

f dy "f de 3,07, 2) [ = V(p",2)1G(y", 29", L,)

Viy",z)]G(y",z;y",L,) ,
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in Fig. 2(a), g(0,0), g(L,,0), g(0,L,), and g(L,,L,)
needed to be evaluated. In order to calculate the compos-
ite domain Green’s function using Dyson’s equation, a
perturbation must be constructed that links the two sec-
tions of the domain. Consequently, in Fig. 2(b), the com-
posite domain is redrawn so that section .S; now extends
to L{=L,+¢, and V(y,z)=k*(n3—n?) between L, and
L'; while in Fig. 2(c), section S; extends to LY —Ll
and V(y,z)=k*n?}—n3) between L and L,. Figures
2(b) and 2(c) are to be used when the unperturbed sec-
tions (as per Dyson’s equation) are S, and S,, respective-
ly. Prior to applying Eq. (5), boundary conditions must
be set and G° needs to be calculated. The boundary con-
ditions are those specified in Sec. II B. For the first recur-
sion step, G° for both S, and S, is the unit-section
Green’s function. For the nth recursion step, GO for S, is
the same, while G° for S, is computed in the (n — 1)th re-
cursion step.

G(0,L,) and G(L,,L,) can be derived from the fol-
lowing set of equations:

(11a)
(11b)
(11c)

(11d)

Note that Egs. (11a) and (11d) were de-

rived with reference to Fig. 2(b), while the other two equations were based on Fig. 2(c); hence the two different expres-
sions for G(y,L;y’,L,). Additionally, in Egs. (11a) and (11d) there are no isolated G,?1 contributions for G(y,0;y’,L,)
and G(y,L,;y’,L,), since the two observations points (0,L, and L,,L,), respectively, exist on different sides of the
discontinuity. Since the discontinuity was introduced as a device to enable us to make use of Dyson’s equation, the lim-
it needs to be taken as the extent of the perturbation region goes to zero, i.e., V(y",z)—V(y",L,)8(z—L,),

G(y,0;y",L;) f "dy" Gy (9,059, L) —

G(y,Ly;y',Ly)=G, (y,Ly;y',Ly)+ fo dy"G, (»,Ly;y", L) V(y",L)IG(y",Ly;y',L,)

L
G(y,Ly;y',Ly)=G, (y,Ly;y',Ly)+ fo "dy"Gy (y,Lysy", LOIV(y",L)IG(y", Ly, Ly) ,

L
GU.LyiyLa)= [ "dy" Gl (v, Lz, L) -

After expanding Eq. (12) in the ¢,,(y
tion over y"’
nipulations to obtain

) basis set, integra-
is performed, followed by some simple ma-

8pg(0,L2)= = (8 Vo (O,L )V, (L1)2g (L 1, L)
| (13a)
8pg(L2,L2)=(8, )pg(Ly,Ly)
+ 380 dpm (Lo Ly)
| X V(L1 )80g(Ly,Ly) (13b)

Viy",L)]G(y",L;y',L,),

(12a)
(12b)
(12¢)
Viy",L)G(y",Ly;y',L,) . (12d)
[
gpq(Ll’LZ):(gr?l )pq(L13L2)
+E(gr?2)pm(L]7L1)
Xan(Ll)gnq(LlyLz) ) (130)
8pg(L1,L2)= = (87 Vo (L1, L)V (L8 (Ly,Ly)
(13d)
L,V
Vel L)'= [ 7dy"8,, (0" )V (", L 1), (p (13¢)

By equating Egs. (13c) and (13d), an expression for
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8pq(L1,L;) can be obtained in terms of known quantities,
g(Ly,Ly)=—V(L) '[g) (Ly,Ly)+g, (Ly,L)]™!
Xgp (Ly,Ly) , (14)

where the subscript notation was dropped (all quantities
are matrices). Finally, upon substituting the above ex-
pression for g(L,L,) into Egs. (13a) and (13b), the
desired relations are obtained,

g(0,Ly)=gy (0,L)T(Ly,Ly)g, (Ly,Ly), (15a)
(a)
Ly S1, ny Sz, n2
y
v z
0 Ly Lo
An=ny- N
_ s 2~ Ny
'Y T (b)
Ly S1, n-' 82, n2
i 1
0 Li Ly'=Li+e L,
An=ny - Ny
1 —)‘r (C)
Ly Sy, ny Sy, ny
1
0 L1"= L1 - & L1 LZ

FIG. 2. Schematic of a two-section composite domain. In
the two sections S, and S,, the indices of refraction are equal to
n; and n,, respectively. (a) The longitudinal lengths of .S, and
S, are L, and L, —L,, respectively. In order to make avail of
Dyson’s equation, the domain is modified as in (b) and (c). In
(b), S, is increased in thickness to L;+¢, and An=n,—n,;
while, in (c), S, is decreased in thickness to L,—e, and
An=n,—n,.

g(L,,L, ):gr?z (Ly,L,)

—8y (Ly,L)T(Ly,Ly)g, (Ly,Ly),  (15b)

T(Ly,Ly)=[g; (L\,Ly)+g, (Li,L)] ™" . (15¢)
where both expressions are functions of known quanti-
ties, are independent of V, and defined in terms of the z-
matrix 7, which acts as an effective potential to link the °
two sections. By going through an analogous procedure,
the following expressions for g(0,0) and g(L,,0) can be
derived:

g(0,0)=g; (0,0)—g; (0,L,)T(L,,L,)g) (L,,0),

(16a)

g(LZ,O)Zg,?Z(LZ,LI )YT(L,,L, )g,‘,)1 (L,0) . (16b)
In comparison with our one-dimensional recursion rela-
tions [12], the two sets of expressions are analogous ex-
cept for the above quantities being matrices instead of
scalars. Using Egs. (15) and (16), one can start from the
left-hand side of the domain and recursively add one unit
section at a time to the current structure until the total
domain is simulated.

D. Field evaluation

As is well known [16], Green’s theorem can be used to
evaluate the wave function anywhere inside a defined
domain in terms of the boundary values and derivatives
of the wave function and its corresponding Green’s func-
tion. By an appropriate choice of boundary conditions
[15], the dependence on the Green’s function derivatives
can be eliminated. One particular choice that realizes
this situation was made in Sec. II B and the resulting ex-
pression for the wave functions along the z=0,L, boun-
daries is

LJ’
Yp.z=0,L,)= [ 7dy'G(y',0,,2)X (y",0)
L
—fo "dy'G(y',L,;y,2)X(y',L,), (17a)

X(y,z)=——a¢(y’2) ,

oz
where X(y,z=0,L,) can be evaluated using Eq. (2) and
the continuity of the electric-field derivative across
dielectric interfaces. Upon expanding the y dependences
of both the Green’s functions and X in the ¢,,(y) basis set
and integrating over y’, one obtains for the z=L, bound-
ary,

Z(Et )p¢p(y):ikN0 2 ¢m (y)gmn(O’Lz)

p m,n,p

(17b)

XS,,[(E;),—(E,),]
_lkNZ 2 ¢m(y) mn(Lz’Lz)
m,n,p

XS,,(E), , (18

where, for example, (E,), are the coefficients for the
¢,,(¥) expansion of E,. After multiplying both sides of
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FIG. 3. Schematic of a 200 period first-order distributed-
feedback reflector composed of a volume grating.

Eq. (18) by fgydy #,(y), performing the integration, and
collecting like terms, one obtains

[ +ikN,g(L,,L,)S]E, —ikNy[g(0,L.)S IE,

+ikNy[G(0,L,)S1E, =0, (19a)
ikN,[g(L,,0)S E, +[I —ikN,g(0,0)S1E,
+[I+ikNyg(0,0)SE, =0, (19b)

where I is the identify matrix, the subscripts have been
dropped, and Eq. (19b) was obtained in an analogous
fashion for the z=0 boundary. The above matrix-vector
equation set is straightforward to solve for both E, and
E, in terms of E;. Finally, upon back transforming, one
obtains the desired quantities, E,(y) and E,(p).

III. RESULTS

In order to check the accuracy of our approach we
simulated wave propagation through a volume grating, as

1.0 T T T T T T T

0.8 4

0.6

0.4

Reflectance

0.2

ff

A 1 1

L 1 !
1.015 1.02 1.025 1.03 1.035 1.04

0.0 L 1
1.00 1.005 1.01

Wavelength (um)

FIG. 4. Reflectance of a 200 period first-order distributed-
feedback reflector as a function of wavelength. The solid lines
are the exact analytical results, while the crosses are the Green’s
functional calculations.
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illustrated in Fig. 3, and through a 3-um slit (to model
single-slit diffraction). The reason for choosing these two
problems is that analytical solutions exist [18] and the
amount of out-scattered radiation is minimal; hence

1.0 T T T T T T T

0.8 r

0.6

Intensity

04

0.2

PN )
SR s T T -2 1

10.0 12.0

0.0 L L
0.0 2.0 4.0 6.0 8.0

Position (um)

1.0 T T T T
(b)

0.6 -

Intensity

10.0 16.0

0.0 5.0 20.0 25.0

Position (um)

FIG. 5. Normalized intensity as a function of position (the
device is symmetric about L, /2) due to diffraction of 1-um radi-
ation by a 3-um slit. The solid and dashed lines are the analyti-
cal Fraunhofer and Green’s-function results, respectively. (a)
Diffraction at a distance of 20 um from the slit, and (b)
diffraction at a distance of 80 um from the slit.
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determining the correct parameters for the absorbing
boundary conditions is simplified. The volume grating is
a 200 period first-order distributed-feedback reflector,
where n, =3.6, n,;=3.45, and n.,,=3.4. The guiding re-
gion width of 0.1 um was chosen to ensure single-mode
operation in each of the waveguides. At a wavelength of
1.0 um, the nominal effective index n . of the structure is
3.42403; hence A;=A,=A/(4n.)=0.073013 um. Fig-
ure 4 gives the reflectance of the grating as a function of
wavelength, where the solid lines are the exact scattering
matrix results [18] and the crosses are the recursive-
Green’s-function results. For the calculations, the input
wave was taken to be the guided wave formed in the
waveguide of thickness A;. W, and n; were chosen such
that the integrated input intensity equaled the total in-
tegrated output intensity, where the majority of results
were generated with W,=2.9 and n;=0.04. Since the
structure is symmetric about L, /2, only half of the de-
vice was simulated; the transverse mesh employed 81
basis functions, while AL, was 7.3013 nm (0.73013 nm
was also tried, yielding analogous results). For each
wavelength, the calculation required ~56 s on an IBM
RS6000 workstation (the code has not been optimized).
As can be seen from Fig. 4, the two results are nearly in
perfect agreement. Since some recent BPM techniques
[4,5] have difficulties modeling strongly guiding struc-
tures, a 50 period grating with n,, and n_, equal to 2.45
and 2.4, respectively, was simulated, yielding also nearly
perfect agreement with the scattering matrix results.

In order to show that modeling of very large domains
is possible, wave propagation through a single slit was
simulated. In the simulation, a plane wave (A=1 pum)
was incident from a media with an index of 1.0 on a 3-um
slit, beyond which lay a media having an index of 3.5.
Again, as a result of symmetry about L, /2, only half of
the device was simulated. Two domains were modeled,
one with L, and L, equal to 30 and 20 um, respectively,
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and the other with L, and L, equal to 50 and 80 um, re-
spectively. The results are shown in Figs. 5(a) and 5(b),
respectively, where the solid lines are the Fraunhofer
diffraction results [18], while the dashed lines are the
Green’s-function results. For L, equal to 20 and 80 um,
the number of transverse basis functions was 106 and
140, respectively, and AL, was 100 nm for both. For the
80-um simulation, the calculation required ~ 180 s on the
IBM RS6000 workstation. Figure 5 shows that our re-
sults accurately reproduce the positions of the maxima
and minima, and for the 80-um simulation, the two
curves are nearly coincident. Thus the far-field regime
does not actually begin until ~100 um beyond the slit.
For the 20-um simulation, the final maxima around 3 yum
is not present in the Green’s-function results due to nu-
merical noise.

IV. CONCLUSIONS

We have introduced an alternative technique for calcu-
lating wave propagation through nonhomogenous two-
dimensional media. It is based on a recursive-Green’s-
function technique, which yields the exact Green’s func-
tion for the problem domain. As a result, comparisons
made with known analytical solutions yield effectively ex-
act agreement. Besides its accuracy, the other major vir-
tue of the approach is its reduction of a large two-
dimensional problem into a series of one-dimensional
ones. Consequently, the computational times are
significantly faster than analogous calculations using the
finite-difference time-domain method, enabling the simu-
lation of larger and more complex structures.
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